168k views
3 votes
Help really hard please

Help really hard please-example-1
User Melloware
by
8.5k points

1 Answer

5 votes

Answer:


\large\boxed{\tt x^{(5)/(6)} + 2x^{(7)/(3)}}

Explanation:


\textsf{We are asked to simplify the given expression.}


\textsf{We should use the \underline{Distributive Property, and Rule of Multiplying Exponents.}}


\boxed{\begin{minipage}{25 em} \underline{\textsf{\large Distributive Property;}} \\ \\ \textsf{Distributive Property is a property that allows us to multiply the term to the left of the parentheses with the terms inside the parentheses.} \\ \\ \underline{\textsf{\large Example;}} \\ \tt a(b+c) = \boxed{\tt ab+ac} \end{minipage}}


\boxed{\begin{minipage}{25 em} \underline{\textsf{\large Rule of Multiplying Exponents;}} \\ \\ \textsf{Whenever we have to multiply 2 terms with exponents, it's important to know the Rule of Multiplying Exponents. This rule states that whenever 2 exponential terms multiply together, their exponents add together. }\\ \\ \underline{\textsf{\large Example;}} \\ \tt x^(3) * \tt x^(4) = x^(3+4) = \boxed{\tt x^(7)} \end{minipage}}


\large\underline{\textsf{Solving;}}


\textsf{We should first use the Distributive Property, then use the Rule of Multiplying}


\textsf{Exponents.}


\tt x^{(1)/(3)} (x^{(1)/(2)} + 2x^(2))


\underline{\textsf{Use the Distributive Property;}}


\tt x^{(1)/(3)} (x^{(1)/(2)} + 2x^(2)) = (x^{(1)/(3)} * x^{(1)/(2)}) + (x^{(1)/(3)} * 2x^(2))


\underline{\textsf{Use the Rule of Multiplying Exponents;}}


\tt (x^{(1)/(3)} * x^{(1)/(2)}) + (x^{(1)/(3)} * 2x^(2)) = x^{(1)/(3) + (1)/(2)} + 2x^{(1)/(3) + (2)/(1) }


\underline{\textsf{Find Common Denominators per fractions;}}


\tt x^{(1)/(3) + (1)/(2)} + 2x^{(1)/(3) + (2)/(1)} = x^{(2)/(6) + (3)/(6)} + 2x^{(2)/(6) + (12)/(6)}


\underline{\textsf{Add;}}


\tt x^{(2)/(6) + (3)/(6)} + 2x^{(2)/(6) + (12)/(6)} = x^{(5)/(6)} + 2x^{(14)/(6)


\underline{\textsf{Simplify Fractions;}}


\large\boxed{\tt x^{(5)/(6)} + 2x^{(7)/(3)}}

User David Hersey
by
7.8k points

No related questions found