The new coordinates after the dilation will be

To find the new coordinates of a figure after a dilation, we multiply the original coordinates by the scale factor. Given that the scale factor k is
, the new coordinates (x', y') for each vertex (x, y) of the rhombus can be found using the following equations:
![\[ x' = x * k \]\[ y' = y * k \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/froo9e5f1tlnbqmpuhqp4nidy6dndg302c.png)
Now we'll apply this to each vertex of the rhombus J(-10, 2), K(-2, 8), L(6, 2), and M(-2, -4) with the given scale factor

1. For vertex J(-10, 2):
![\[ J'(x') = -10 * (1)/(2) = -5 \]\[ J'(y') = 2 * (1)/(2) = 1 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/woy83ujmrgyz00bme224acu9wfs7ewkyv1.png)
So J' will be (-5, 1)
2. For vertex K(-2, 8):
![\[ K'(x') = -2 * (1)/(2) = -1 \]\[ K'(y') = 8 * (1)/(2) = 4 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/jgqla1uzk8eex86inw8iisgqc7wfz7vhmq.png)
So K' will be (-1, 4) .
3. For vertex L(6, 2):
![\[ L'(x') = 6 * (1)/(2) = 3 \]\[ L'(y') = 2 * (1)/(2) = 1 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/4cjee2bxn7efdgz8jab6zvadg9hgqf6o28.png)
So L' will be (3, 1) .
4. For vertex M(-2, -4):
![\[ M'(x') = -2 * (1)/(2) = -1 \]\[ M'(y') = -4 * (1)/(2) = -2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/4u8c5m78ixlcssnavxmg68jbaq6z9putqu.png)
So M' will be (-1, -2) .