163k views
2 votes
At 250 °C a gas has a volume of 425 mL. What is the volume of this gas at 125°C?

User Keybits
by
7.1k points

1 Answer

5 votes

Charles's Law-


\:\:\:\:\:\: \:\:\:\:\:\:\star\longrightarrow\sf \underline{(V_1)/(T_1)=(V_2)/(T_2)}\\

Where:-

  • V₁ = Initial volume
  • T₁ = Initial temperature
  • V₂ = Final volume
  • T₂ = Final temperature

As per question, we are given that -

  • V₁=425 mL
  • T₁ = 250°C
  • T₂ =125°C

We are given the initial temperature and the final temperature in °C.So, we first have to convert those temperatures in Celsius to kelvin by adding 273-


\:\:\:\:\:\:\star\sf T_1 = 250+ 273 = 523 K


\:\:\:\:\:\:\star\sf T_2 =125+273 = 398K

Now that we have obtained all the required values, so we can put them into the formula and solve for V₂ :-


\:\:\:\:\:\: \:\:\:\:\:\:\star\longrightarrow\sf \underline{(V_1)/(T_1)=(V_2)/(T_2)}\\


\:\:\:\:\:\:\:\:\:\:\:\:\longrightarrow \sf V_2= (V_1)/(T_1)* T_2\\


\:\:\:\:\:\:\:\:\:\:\:\:\longrightarrow \sf V_2= (425)/(523)* 398\\


\:\:\:\:\:\:\:\:\:\:\:\:\longrightarrow \sf V_2= 0.8126195..........* 398\\


\:\:\:\:\:\: \:\:\:\:\:\:\longrightarrow \sf V_2 =323.4225.............\\


\:\:\:\:\:\:\:\:\:\:\:\:\longrightarrow \sf\underline{ V_2= 323.42\:mL}\\

Therefore, the volume of this gas at 125°C will become 323.42 mL.

User Michael Aguilar
by
8.1k points