194k views
4 votes
What is the equation of the circle? *

(0,0)
O(x+1)^2+(y+1)^2=49
O(x-1)^2+(y-1)^2=49
O(x)^2+(y)^2=49
O(x+1)^2+(y+1)^2=7
1 point

User Pplonski
by
8.5k points

1 Answer

2 votes

Answer:

(C) (x)^2 + (y)^2 = 49.

Explanation:

The equation of a circle with center (h, k) and radius r is given by:

(x - h)^2 + (y - k)^2 = r^2

In this case, the center of the circle is (0, 0), so h = 0 and k = 0. The radius of the circle is not given, but we can see that the equation must have a radius of 7 because the only terms involving x and y are squared and have coefficients of 1, which means they represent the distance from the center squared.

Therefore, the equation of the circle is:

(x - 0)^2 + (y - 0)^2 = 7^2

Simplifying, we get:

x^2 + y^2 = 49

So the correct answer is (C) (x)^2 + (y)^2 = 49.

User VMh
by
7.5k points

No related questions found