Answer:
(C) (x)^2 + (y)^2 = 49.
Explanation:
The equation of a circle with center (h, k) and radius r is given by:
(x - h)^2 + (y - k)^2 = r^2
In this case, the center of the circle is (0, 0), so h = 0 and k = 0. The radius of the circle is not given, but we can see that the equation must have a radius of 7 because the only terms involving x and y are squared and have coefficients of 1, which means they represent the distance from the center squared.
Therefore, the equation of the circle is:
(x - 0)^2 + (y - 0)^2 = 7^2
Simplifying, we get:
x^2 + y^2 = 49
So the correct answer is (C) (x)^2 + (y)^2 = 49.