168k views
5 votes
A container containing 5.75L of a gas is collected at 115 K and then allowed to expand to 25 L. What must the new temperature be to maintain the same pressure?

1 Answer

4 votes

Charles's Law-


\:\:\:\:\:\: \:\:\:\:\:\:\star\longrightarrow\sf \underline{(V_1)/(T_1)=(V_2)/(T_2)}\\

Where:-

  • V₁ = Initial volume
  • T₁ = Initial temperature
  • V₂ = Final volume
  • T₂ = Final temperature

As per question, we are given that -

  • V₁=5.75L
  • T₁ = 115K
  • V₂ =25 L

Now that we have obtained all the required values, so we can put them into the formula and solve for T₂ :-


\:\:\:\:\:\: \:\:\:\:\:\:\star\longrightarrow\sf \underline{(V_1)/(T_1)=(V_2)/(T_2)}\\


\:\:\:\:\:\: \:\:\:\:\:\:\longrightarrow\sf \underline{(T_2)/(V_2)=(T_1)/(V_1)}\\


\:\:\:\:\:\: \:\:\:\:\:\:\longrightarrow\sf \underline{T_2=(T_1)/(V_1) * V_2}\\


\:\:\:\:\:\: \:\:\:\:\:\:\longrightarrow\sf T_2=\cancel{(115)/(5.75) }* 25\\


\:\:\:\:\:\: \:\:\:\:\:\:\longrightarrow\sf T_2=20 * 25\\


\:\:\:\:\:\: \:\:\:\:\:\:\longrightarrow\sf T_2=500\:K\\


\:\:\:\:\:\: \:\:\:\:\:\:\longrightarrow\sf T_2=(500 -273)°C\\


\:\:\:\:\:\: \:\:\:\:\:\:\longrightarrow\sf \underline{T_2=227\:°C}\\

Therefore, the new temperature will become 500K or, 227°C to maintain the same pressure.

User RohitPorwal
by
8.4k points