6.6k views
3 votes
What is the answer to this question?
dy/dx=?

What is the answer to this question? dy/dx=?-example-1
User Stelloy
by
8.1k points

1 Answer

4 votes


\:\:\:\:\: \:\:\:\:\:\:\star\longrightarrow \sf y = x^(x){}^(²)\\

Taking the logarithm on both sides -


\:\:\:\:\: \:\:\:\:\:\:\longrightarrow \sf log y = log x^(x){}^(²)\\


\:\:\:\:\:\:\:\:\:\:\:\longrightarrow \sf log y = x^2 log x\\


\:\:\: \boxed{\sf\pink{\:\:\: loga^b = blog a }}\\

Differentiating with respect to x-


\:\:\:\:\:\:\:\:\:\:\:\longrightarrow \sf (d)/(dx) logy = (d)/(dx) x^2 log x \\


\:\:\:\:\: \:\:\:\:\:\:\longrightarrow \sf (1)/(y) * (dy)/(dx) = x^2 (d)/(dx) log x + logx (d)/(dx) x^2\\


\:\:\:\:\boxed{\sf\pink{(d)/(dx) logx = (1)/(x)}} \\


\:\:\:\:\boxed{\sf\pink{\sf(d)/(dx)\bigg[f(x)\:g(x)\bigg] = f(x) (d)/(dx) g(x) + g(x) (d)/(dx) f(x)}}\\


\:\:\:\:\: \:\:\:\:\:\:\longrightarrow \sf (d)/(dx) = y \bigg[ x^2 * (1)/(x) + logx * 2x \bigg]\\


\:\:\:\:\:\:\:\:\:\:\:\longrightarrow \sf (dy)/(dx) = y \bigg[ \cancel{x}\: x * \frac{1}{\cancel{x}} + 2x\:logx \bigg]\\


\:\:\:\:\:\:\:\:\:\:\:\longrightarrow \sf \underline{(dy)/(dx) = y \bigg[ x + 2x\:logx \bigg]}\\


\:\:\:\:\:\:\:\:\:\:\:\longrightarrow \sf \underline{(dy)/(dx) = \boxed{\sf x^(x){}^(²)\bigg[ x + 2x\:logx \bigg]}}\\

User Profimedica
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories