6.6k views
3 votes
What is the answer to this question?
dy/dx=?

What is the answer to this question? dy/dx=?-example-1
User Stelloy
by
8.1k points

1 Answer

4 votes


\:\:\:\:\: \:\:\:\:\:\:\star\longrightarrow \sf y = x^(x){}^(²)\\

Taking the logarithm on both sides -


\:\:\:\:\: \:\:\:\:\:\:\longrightarrow \sf log y = log x^(x){}^(²)\\


\:\:\:\:\:\:\:\:\:\:\:\longrightarrow \sf log y = x^2 log x\\


\:\:\: \boxed{\sf\pink{\:\:\: loga^b = blog a }}\\

Differentiating with respect to x-


\:\:\:\:\:\:\:\:\:\:\:\longrightarrow \sf (d)/(dx) logy = (d)/(dx) x^2 log x \\


\:\:\:\:\: \:\:\:\:\:\:\longrightarrow \sf (1)/(y) * (dy)/(dx) = x^2 (d)/(dx) log x + logx (d)/(dx) x^2\\


\:\:\:\:\boxed{\sf\pink{(d)/(dx) logx = (1)/(x)}} \\


\:\:\:\:\boxed{\sf\pink{\sf(d)/(dx)\bigg[f(x)\:g(x)\bigg] = f(x) (d)/(dx) g(x) + g(x) (d)/(dx) f(x)}}\\


\:\:\:\:\: \:\:\:\:\:\:\longrightarrow \sf (d)/(dx) = y \bigg[ x^2 * (1)/(x) + logx * 2x \bigg]\\


\:\:\:\:\:\:\:\:\:\:\:\longrightarrow \sf (dy)/(dx) = y \bigg[ \cancel{x}\: x * \frac{1}{\cancel{x}} + 2x\:logx \bigg]\\


\:\:\:\:\:\:\:\:\:\:\:\longrightarrow \sf \underline{(dy)/(dx) = y \bigg[ x + 2x\:logx \bigg]}\\


\:\:\:\:\:\:\:\:\:\:\:\longrightarrow \sf \underline{(dy)/(dx) = \boxed{\sf x^(x){}^(²)\bigg[ x + 2x\:logx \bigg]}}\\

User Profimedica
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.