161k views
25 votes
A chemist titrates 190.0 mL of a 0.8125 M ammonia (NH) solution with 0.3733 M HCl solution at 25 °C. Calculate the pH at equivalence. The pK, of

ammonia is 4.75.
Round your answer to 2 decimal places.
Note for advanced students: you may assume the total volume of the solution equals the initial volume plus the volume of HCl solution added.
pH ?

User MikeBaker
by
6.6k points

1 Answer

6 votes

Answer:

Approximately
4.92.

Step-by-step explanation:

Initial volume of the solution:
V = 190.0\; \rm mL = 0.1900\; \rm L.

Initial quantity of
\rm NH_3:


\begin{aligned} n({\rm NH_3}) &= c({\rm NH_3}) \cdot V({\rm NH_3}) \\ &= 0.3733\; \rm mol \cdot L^(-1) * 0.1900\; \rm L \\ &\approx 0.154375\; \rm mol\end{aligned}.

Ammonia
\rm NH_3 reacts with hydrochloric
\rm HCl acid at a one-to-one ratio:


\rm NH_3 + HCl \to NH_4 Cl.

Hence, approximately
n({\rm HCl}) = 0.154375\; \rm mol of
\rm HCl\! molecules would be required to exactly react with the
\rm NH_3\! in the original solution and hence reach the equivalence point of this titration.

Calculate the volume of that
0.3733\; \rm mol \cdot L^(-1)
\rm HCl solution required for reaching the equivalence point of this titration:


\begin{aligned}V({\rm HCl}) &= \frac{n({\rm HCl})}{c({\rm HCl})} \\ &\approx (0.154375\; \rm mol)/(0.3733\; \rm mol \cdot L^(-1)) \approx 0.413541\; \rm L\end{aligned}.

Hence, by the assumption stated in the question, the volume of the solution at the equivalence point would be approximately
0.413541\; \rm L + 0.1900\; \rm L \approx 0.6035\; \rm L.

If no hydrolysis took place,
0.154375\; \rm mol of
\rm NH_4 Cl would be produced. Because
\rm NH_4 Cl\! is a soluble salt, the solution would contain
0.154375\; \rm mol\! of
\rm {NH_4}^(+) ions. The concentration of
\rm {NH_4}^(+)\! would be approximately:


\begin{aligned}c({\rm {NH_4}^(+)}) &= \frac{n({\rm {NH_4}^(+)})}{V({\rm {NH_4}^(+)})}\\ &\approx (0.154375\; \rm mol)/(0.6035\; \rm L) \approx 0.255782\; \rm mol \cdot L^(-1)\end{aligned}.

However, because
\rm NH_3 \cdot H_2O is a weak base, its conjugate
\rm {NH_4}^(+) would be a weak base.


\begin{aligned}pK_(\rm a)({{\rm NH_4}}^(+)) &= pK_(\rm w) - pK_(\rm b)({\rm NH_3})\\ &\approx 13.99 - 4.75 = 9.25\end{aligned}.

Hence, the following reversible reaction would be take place in the solution at the equivalence point:


\rm {NH_4}^(+) \rightleftharpoons NH_3 + H^(+).

Let
x\; \rm mol \cdot L^(-1) be the increase in the concentration of
\rm H^(+) in this solution because of this reversible reaction. (Notice that
x \ge 0.) Construct the following
\text{RICE} table:


\begin{array}c \textbf{R}& \rm {\rm NH_4}^(+) & \rightleftharpoons & {\rm NH_3}& + & {\rm H}^(+)\\ \textbf{I} & 0.255782 \; \rm M \\ \textbf{C} & -x \;\rm M & & + x\;\rm M & & + x\; \rm M \\ \textbf{E} & (0.255782 - x)\; \rm M & & x\; \rm M & & x\; \rm M\end{array}.

Thus, at equilibrium:

  • Concentration of the weak acid:
    [{\rm {NH_4}^(+)}] \approx (0.255782 - x) \; \rm M.
  • Concentration of the conjugate of the weak acid:
    [{\rm NH_3}] = x\; \rm M.
  • Concentration of
    \rm H^(+):
    [{\rm {H}^(+)}] \approx x\; \rm M.


\displaystyle \frac{[{\rm NH_3}] \cdot [{\rm H^(+)}]}{[{ \rm {NH_4}^(+)}]} = 10^{pK_\text{a}({\rm {NH_4}^(+)})}.


\displaystyle (x^2)/(0.255782 - x) \approx 10^(-9.25)

Solve for
x. (Notice that the value of
x\! is likely to be much smaller than
0.255782. Hence, the denominator on the left-hand side
(0.255782 - x) \approx 0.255782.)


x \approx 1.19929 * 10^(-5).

Hence, the concentration of
\rm H^(+) at the equivalence point of this titration would be approximately
1.19929 * 10^(-5)\; \rm M.

Hence, the
pH at the equivalence point of this titration would be:


\begin{aligned}pH &= -\log_(10)[{\rm {H}^(+)}] \\ &\approx -\log_(10) \left(1.19929 * 10^(-5)\right) \approx 4.92\end{aligned}.