Answer:
we need 19.52 g of sugar to produce 10 g of ethanol.
Step-by-step explanation:
The balanced chemical equation for the fermentation of glucose (sugar) to ethanol (C2H5OH) is:
C6H12O6 → 2C2H5OH + 2CO2
From the equation, we can see that one mole of glucose (C6H12O6) reacts to produce two moles of ethanol (C2H5OH). To determine how many grams of sugar are needed to produce 10g of ethanol, we need to use stoichiometry and the molar mass of glucose.
The molar mass of glucose is 180.16 g/mol, and the molar mass of ethanol is 46.07 g/mol. Therefore, we can calculate the number of moles of ethanol produced from 10 g as follows:
moles of C2H5OH = mass / molar mass = 10 g / 46.07 g/mol = 0.217 moles
Since two moles of ethanol are produced from one mole of glucose, we can calculate the number of moles of glucose needed as follows:
moles of glucose = 0.217 moles / 2 = 0.1085 moles
Finally, we can calculate the mass of glucose needed as follows:
mass of glucose = moles of glucose × molar mass of glucose
mass of glucose = 0.1085 moles × 180.16 g/mol
mass of glucose = 19.52 g