Answer:
the magnitude of the velocity when t = 3 s is 10.54 m/s.
Step-by-step explanation:
To solve this problem, we can use the following kinematic equation that relates velocity, acceleration, and time:
v = vo + at
where:
v = final velocity
vo = initial velocity
a = acceleration
t = time
First, we need to find the velocity of the object at time t = 3 s. To do this, we can substitute the given values into the kinematic equation and solve for v:
v = vo + at
v = 8i + (-0.2i+2j+1.5k) x 3
v = 8i - 0.6i + 6j + 4.5k
v = 7.4i + 6j + 4.5k
The magnitude of the velocity is given by:
|v| = sqrt(vx^2 + vy^2 + vz^2)
where:
vx, vy, vz = the x, y, and z components of the velocity vector
Substituting the values from above, we get:
|v| = sqrt((7.4)^2 + 6^2 + (4.5)^2)
|v| = sqrt(54.81 + 36 + 20.25)
|v| = sqrt(111.06)
|v| = 10.54 m/s (approx)