170k views
1 vote
(24x3−2x2−8x+30)÷(x−2)

2 Answers

5 votes

Answer:

the quotient is 24x² + 46x + 86 and the remainder is 198. Thus, we can write:

(24x³ - 2x² - 8x + 30) ÷ (x - 2) = 24x² + 46x + 86 + 198/(x - 2)

Explanation:

We can perform polynomial long division to divide (24x³ - 2x² - 8x + 30) by (x - 2).

24x² + 46x + 86

----------------------

x - 2 | 24x³ - 2x² - 8x + 30

- (24x³ - 48x²)

------------------

46x² - 8x

- (46x² - 92x)

--------------

84x + 30

- (84x - 168)

--------------

198

Therefore, the quotient is 24x² + 46x + 86 and the remainder is 198. Thus, we can write:

(24x³ - 2x² - 8x + 30) ÷ (x - 2) = 24x² + 46x + 86 + 198/(x - 2)

User Sduplooy
by
8.0k points
0 votes

We can long divide (24x^3 - 2x^2 - 8x + 30) by (x - 2) as follows:

24x^2 + 46x + 86

_______________________

x - 2 | 24x^3 - 2x^2 - 8x + 30

-(24x^3 - 48x^2)

_______________

46x^2 - 8x

46x^2 - 92x

___________

84x + 30

84x - 168

________

198

Therefore, (24x^3 - 2x^2 - 8x + 30) ÷ (x - 2) = 24x^2 + 46x + 86 with a remainder of 198/(x - 2).

User Leopold Joy
by
7.8k points

No related questions found