Answer:
Width = 10
Explanation:
let length = X
width = 3X - 2
Area = length x width
40 = X x (3X - 2)
40 = 3X^2 - 2X
therefore 3X^2 - 2x - 40 = 0
3x^2 + 10x - 12x - 40 = 0
x(3x + 10) - 4(3x + 10) = 0
(x - 4) (3x + 10) = 0
(x - 4) = 0
x = 4
(3x + 10) = 0
3x = - 10
x = -10/3
Since the lenght can't be negative, we'll work with x = 4
Therefore the width = 3x - 2
Width = 3(4) -2
Width = 12 - 2
Width = 10