196k views
4 votes
100 POINTS
Divide.
(4x^4-4x^2-x-3)/(2x^2-3)

100 POINTS Divide. (4x^4-4x^2-x-3)/(2x^2-3)-example-1

2 Answers

6 votes

We can use polynomial long division to divide (4x^4 - 4x^2 - x - 3) by (2x^2 - 3):

2x^2 + 0x - 1

---------------------

2x^2 - 3 | 4x^4 + 0x^3 - 4x^2 - x - 3

4x^4 - 6x^2

-----------

2x^2 - x

2x^2 - 3

-------

x - 3

Therefore,

(4x^4 - 4x^2 - x - 3)/(2x^2 - 3) = 2x^2 + 0x - 1 with a remainder of (x - 3)/(2x^2 - 3).

So the final answer is

2x^2 - 1 + (x - 3)/(2x^2 - 3)

User Ngearing
by
9.0k points
5 votes

The result of the polynomial division is (4x⁴ - 4x² - x - 3) ÷ (2x² - 3) = (2x² + 5) - (x + 12)/(2x² - 3)

How to divide the polynomial

From the question, we have the following parameters that can be used in our computation:

(4x⁴ - 4x² - x - 3) ÷ (2x² - 3)

Using the long division method of quotient, we have

2x² - 3 | 4x⁴ - 4x² - x - 3

The division steps are as follows

2x² + 5

2x² - 3 | 4x⁴ - 4x² - x - 3

4x⁴ - 6x²

--------------------------------------------------------------

10x² - x - 3

10x² - 15

--------------------------------------------------------------

-x - 12

This means that

(4x⁴ - 4x² - x - 3) ÷ (2x² - 3) = (2x² + 5) - (x + 12)/(2x² - 3)

User Moldovan Daniel
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories