35.4k views
0 votes
Quadrilateral ABCD is a parallelogram. Complete the statements to prove that AB = CD and BC = AD.

User Bigmadwolf
by
8.2k points

1 Answer

1 vote

Given that ABCD is a parallelogram:

Opposite sides of a parallelogram are parallel and congruent. Therefore, AB = DC.

Diagonals of a parallelogram bisect each other. Therefore, the midpoint of AC is the same as the midpoint of BD. Let M be the midpoint of AC, and N be the midpoint of BD.

By the midpoint theorem, BM = DM and BN = AN.

Since BM = DM and BN = AN, we can conclude that quadrilateral ABCD is a parallelogram in which BC || AD and CD || AB.

Therefore, we have shown that AB = CD and BC = AD in parallelogram ABCD.

User Siavolt
by
8.4k points

No related questions found