Answer:
The relationship between d, c and p is that
![p = (4c^2)/(9d)](https://img.qammunity.org/2022/formulas/mathematics/college/nosk9aryn6gfd5f7l697pb4dnfde3mi3x1.png)
Explanation:
Roots of a quadratic equation:
The roots
and
of a quadratic equation in the following format:
![ax^2 + bx + c = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/zr7rnrqdl9949zyh82x99sxuko2nrvrqaw.png)
Can be given by:
![r_1 + r_2 = -(b)/(a)](https://img.qammunity.org/2022/formulas/mathematics/college/ydcar3n39ysf0cq9rbsy4gay284oz3t3as.png)
![r_1r_2 = (c)/(a)](https://img.qammunity.org/2022/formulas/mathematics/college/uvwhei9das9ogcej4qjbryuea61k91mhuf.png)
In this question:
We have the following quadratic equation:
![dx^2 - cx + p = 0](https://img.qammunity.org/2022/formulas/mathematics/college/do47phfm0drniwbrf44lza9d73h77kd7n3.png)
So
![a = d, b = -c, c = p](https://img.qammunity.org/2022/formulas/mathematics/college/6rk2dgl7kgo4jch8k1jwrnjz11fwzx6h8a.png)
One of the roots is twice the other:
So
![r_2 = 2r_1](https://img.qammunity.org/2022/formulas/mathematics/college/hzayppgsnlda0foo7mufoo5qu2t46956ph.png)
First relation:
![r_1 + r_2 = -(b)/(a)](https://img.qammunity.org/2022/formulas/mathematics/college/ydcar3n39ysf0cq9rbsy4gay284oz3t3as.png)
![r_1 + 2r_1 = -((-c))/(d)](https://img.qammunity.org/2022/formulas/mathematics/college/jdxhgtrkxu06nhbm4s3w4c5y90k30sgwck.png)
![3r_1 = (c)/(d)](https://img.qammunity.org/2022/formulas/mathematics/college/m5fy5hey4k3am9bp9xp6dcde7hbxzy4nmv.png)
![r_1 = (c)/(3d)](https://img.qammunity.org/2022/formulas/mathematics/college/g7lxw2abqf9u8hp32yef2my14agz02fwxh.png)
Second relation:
![r_1r_2 = (c)/(a)](https://img.qammunity.org/2022/formulas/mathematics/college/uvwhei9das9ogcej4qjbryuea61k91mhuf.png)
![r_1*2r_1 = (p)/(d)](https://img.qammunity.org/2022/formulas/mathematics/college/zzhoz7fd53uxyi1cv34vbk0lz62umm4med.png)
![2r_(1)^(2) = (p)/(d)](https://img.qammunity.org/2022/formulas/mathematics/college/xg021693zvgiig8tp7mf5mghmadxy0aurz.png)
![((2c)/(3d))^2 = (p)/(d)](https://img.qammunity.org/2022/formulas/mathematics/college/7rzn68gdhyltdnzobfzicbi7n7ywcauo8g.png)
![(4c^2)/(9d^2) = (p)/(d)](https://img.qammunity.org/2022/formulas/mathematics/college/dzwfd5ur12py8ngj8q3u1tltv623c0eg0c.png)
![p = (4c^2)/(9d)](https://img.qammunity.org/2022/formulas/mathematics/college/nosk9aryn6gfd5f7l697pb4dnfde3mi3x1.png)
The relationship between d, c and p is that
![p = (4c^2)/(9d)](https://img.qammunity.org/2022/formulas/mathematics/college/nosk9aryn6gfd5f7l697pb4dnfde3mi3x1.png)