233k views
5 votes
(2x^3 -3x^2 +4x -1) /(x+2)

User Vlizana
by
7.8k points

2 Answers

4 votes


\blue{\huge {\mathrm{DIVIDING \; POLYNOMIALS}}}


\\


{===========================================}


{\underline{\huge \mathbb{Q} {\large \mathrm {UESTION : }}}}


  • \sf ((2x^3 -3x^2 +4x -1))/((x+2))


{===========================================}


{\underline{\huge \mathbb{A} {\large \mathrm {NSWER : }}}}

  • Through the computations performed, we came to the conclusion that the quotient is
    \blue{\bold{2x^2 - 7x + 18}} and the remainder is
    \red{\bold{-37}}.


{===========================================}


{\underline{\huge \mathbb{S} {\large \mathrm {OLUTION : }}}}


\qquad\begin{aligned}\sf \blue{2x^2 - 7x + 18} \:\:\:\:\:\:\:\:\:\: &\\\sf x + 2 \: \: ) \overline{2x^3 - 3x^2+4x-1} \quad&\\\sf \: \: \underline{ - 2x^3 - 4x^2 \qquad\qquad \: \: \: \: } \\\sf - 7x^2 + 4x \qquad \: \: \: \\\sf \:\:\: \underline{ - 7x^2 + 14x \qquad \: } \\ \sf 18x - 1 \: \: \: \\ \underline{ \sf{ - 18x - 36 \: }} \\ \sf \red{ - 37} \end{aligned}


{===========================================}


- \large\sf\copyright \: \large\tt{AriesLaveau}\large\qquad\qquad\qquad\qquad\qquad\qquad\tt 04/02/2023

User Kudlajz
by
7.6k points
0 votes

Quotient2x² - 7x + 18

Remainder- 37

━━━━━━━━━━━━━━━━━━━━━━

SolutioN ::

  • ➸ Attachment


\begin{gathered} \\ \\ \qquad{\rule{120pt}{7pt}} \\ \\ \end{gathered}

VerificatioN ::

  • ➸ Taking the product of Divisor and Quotient as LHS


\begin{gathered} \\ \\ \; \; :\longmapsto \; \sf {x(2x^(2) - 7x + 18) + 2(2x^(2) - 7x + 18) + ( - 37)} \\ \\ \end{gathered}


\begin{gathered} \\ \; \; :\longmapsto \; \sf {2x^(3) - 7x^(2) + 18x + 4x^(2) - 14x + 36 - 37} \\ \\ \end{gathered}


\begin{gathered} \\ \; \; :\longmapsto \; \sf {2x^(3) - 7x^(2) + 4x^(2) + 18x - 14x - 1} \\ \\ \end{gathered}


\begin{gathered} \\ \; \; :\longmapsto \; \sf \pink{2x^(3) - 3x^(2) + 4x - 1} \\ \\ \end{gathered}

  • ➸ Taking Dividend as RHS


\begin{gathered} \\ \\ \; \; :\longmapsto \; \sf \pink{2x^(3) - 3x^(2) + 4x - 1} \\ \\ \end{gathered}


\begin{gathered} \\ \; \; :\longmapsto \; \sf {LHS = RHS} \\ \\ \end{gathered}


\begin{gathered} \\ \; \; :\longmapsto \; \underline{\boxed{\sf{Verified}}} \; \pmb{\red{\bigstar}} \\ \\ \end{gathered}


\begin{gathered} \\ {\underline{\rule{150pt}{10pt}}} \end{gathered}

(2x^3 -3x^2 +4x -1) /(x+2)-example-1
User Smithclay
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories