233k views
5 votes
(2x^3 -3x^2 +4x -1) /(x+2)

User Vlizana
by
8.2k points

2 Answers

4 votes


\blue{\huge {\mathrm{DIVIDING \; POLYNOMIALS}}}


\\


{===========================================}


{\underline{\huge \mathbb{Q} {\large \mathrm {UESTION : }}}}


  • \sf ((2x^3 -3x^2 +4x -1))/((x+2))


{===========================================}


{\underline{\huge \mathbb{A} {\large \mathrm {NSWER : }}}}

  • Through the computations performed, we came to the conclusion that the quotient is
    \blue{\bold{2x^2 - 7x + 18}} and the remainder is
    \red{\bold{-37}}.


{===========================================}


{\underline{\huge \mathbb{S} {\large \mathrm {OLUTION : }}}}


\qquad\begin{aligned}\sf \blue{2x^2 - 7x + 18} \:\:\:\:\:\:\:\:\:\: &\\\sf x + 2 \: \: ) \overline{2x^3 - 3x^2+4x-1} \quad&\\\sf \: \: \underline{ - 2x^3 - 4x^2 \qquad\qquad \: \: \: \: } \\\sf - 7x^2 + 4x \qquad \: \: \: \\\sf \:\:\: \underline{ - 7x^2 + 14x \qquad \: } \\ \sf 18x - 1 \: \: \: \\ \underline{ \sf{ - 18x - 36 \: }} \\ \sf \red{ - 37} \end{aligned}


{===========================================}


- \large\sf\copyright \: \large\tt{AriesLaveau}\large\qquad\qquad\qquad\qquad\qquad\qquad\tt 04/02/2023

User Kudlajz
by
7.6k points
0 votes

Quotient2x² - 7x + 18

Remainder- 37

━━━━━━━━━━━━━━━━━━━━━━

SolutioN ::

  • ➸ Attachment


\begin{gathered} \\ \\ \qquad{\rule{120pt}{7pt}} \\ \\ \end{gathered}

VerificatioN ::

  • ➸ Taking the product of Divisor and Quotient as LHS


\begin{gathered} \\ \\ \; \; :\longmapsto \; \sf {x(2x^(2) - 7x + 18) + 2(2x^(2) - 7x + 18) + ( - 37)} \\ \\ \end{gathered}


\begin{gathered} \\ \; \; :\longmapsto \; \sf {2x^(3) - 7x^(2) + 18x + 4x^(2) - 14x + 36 - 37} \\ \\ \end{gathered}


\begin{gathered} \\ \; \; :\longmapsto \; \sf {2x^(3) - 7x^(2) + 4x^(2) + 18x - 14x - 1} \\ \\ \end{gathered}


\begin{gathered} \\ \; \; :\longmapsto \; \sf \pink{2x^(3) - 3x^(2) + 4x - 1} \\ \\ \end{gathered}

  • ➸ Taking Dividend as RHS


\begin{gathered} \\ \\ \; \; :\longmapsto \; \sf \pink{2x^(3) - 3x^(2) + 4x - 1} \\ \\ \end{gathered}


\begin{gathered} \\ \; \; :\longmapsto \; \sf {LHS = RHS} \\ \\ \end{gathered}


\begin{gathered} \\ \; \; :\longmapsto \; \underline{\boxed{\sf{Verified}}} \; \pmb{\red{\bigstar}} \\ \\ \end{gathered}


\begin{gathered} \\ {\underline{\rule{150pt}{10pt}}} \end{gathered}

(2x^3 -3x^2 +4x -1) /(x+2)-example-1
User Smithclay
by
8.1k points

No related questions found