as already suggested, we can simply get the whole volume of the larger cone and then get the volume of the upper-smaller cone and if we subtract the volume of the upper-smaller cone, in essence making a hole in the larger cone, what's leftover is the shaded part.
![\stackrel{ \textit{\LARGE Larger} }{\textit{volume of a cone}}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=4\\ h=10 \end{cases}\implies V=\cfrac{\pi (4)^2 (10)}{3} \\\\\\ \stackrel{ \textit{\LARGE Upper-Smaller} }{\textit{volume of a cone}}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=2\\ h=4 \end{cases}\implies V=\cfrac{\pi (2)^2 (4)}{3} \\\\[-0.35em] ~\dotfill](https://img.qammunity.org/2024/formulas/mathematics/college/4jixbw01gpljrjtg2cke4stz6hz4ave8r5.png)
