3.3k views
1 vote
Negative Exponent Rule: Which expressions are equivalent to 10−6? Select all that apply.

Negative Exponent Rule: Which expressions are equivalent to 10−6? Select all that-example-1
User JD Davis
by
8.4k points

1 Answer

1 vote

Answer:


\large\boxed{\textsf{See Below.}}

Explanation:


\textsf{We are asked which expressions are equivalent to 10}^(\tt -6).


\textsf{We are given that we need to use the \underline{Negative Exponent Rule}.}


\large\underline{\textsf{What is the Negative Exponent Rule?}}


\textsf{The Negative Exponent Rule is a rule that describe how to evaluate negative}


\textsf{exponents.}


\large\underline{\textsf{How do we use the Negative Exponent Rule?}}


\textsf{We use the negative exponent rule to multiply the denominator of a number by}


\textsf{itself how many times the value of the exponent is.}


\underline{\textsf{Example of the Negative Exponent Rule;}}


\tt 10^(-2). \ \textsf{Start with 10}^(\tt 1), \ \textsf{then continue.}


\tt 10^(1) = (10)/(1) \rightarrow 10^(\tt 0) = (10)/(1 * 10) = (10)/(10) \rightarrow 10^(\tt -1) = (10)/(10 * 10) = (10)/(100) \rightarrow 10^(\tt -2) = (10)/(100 * 10) = \boxed{ (10)/(1000) }


\large\underline{\textsf{Use the Negative Exponent Rule for our given expressions;}}


\tt (1)/(10 * 10 * 10 * 10 * 10 * 10) \overset{\textsf{is the same as}} \rightarrow (1)/(10^(6))


\textsf{There is a fraction for this expression, meaning that the exponent is negative.}


\tt (1)/(10^(6)) = 10^(\tt -6)


\large\boxed{\tt (1)/(10 * 10 * 10 * 10 * 10 * 10) = 10^(\tt -6)}

-------------------------------------------------------------------------


\tt 10^(\tt -3) * 10^(\tt 2)


\textsf{Remember that when exponents multiply, they're going to add together due to}


\textsf{this expression having at least 2 constants.}


\tt 10^(\tt -3) * 10^(\tt 2) \rightarrow 10^(\tt -3+2) \rightarrow 10^(\tt -1)


\large\boxed{\tt 10^(\tt -3) * 10^(\tt 2) \\eq 10^(\tt -6)}

-------------------------------------------------------------------------


\tt 10^(\tt -3) + 10^(\tt -3)


\textsf{We should know that adding exponents is not like adding whole numbers/terms.}


\textsf{We will need to evaluate 10}^(\tt -3) \ \textsf{using the Negative Exponent Rule.}


\tt 10^(\tt 0) = (10)/(10) \rightarrow \tt 10^(\tt -1) = (10)/(10 * 10) = (10)/(100) \rightarrow \tt 10^(\tt -2) = (10)/(100 * 10) = (10)/(1000) \rightarrow \tt 10^(\tt -3) = (10)/(1000 * 10) = \boxed{(10)/(10000)}


\tt (10)/(10000) \ \textsf{can reduce to} \ \boxed{\tt (1)/(1000)}


\underline{\textsf{We are now adding;}}


\tt (1)/(1000) + (1)/(1000) = (2)/(1000) \rightarrow \boxed{(1)/(500) }


\textsf{This does \underline{not} evaluate to 10}^(\tt -6)


\large\boxed{\tt 10^(\tt -3) + 10^(\tt -3) \\eq 10^(\tt -6)}

-------------------------------------------------------------------------


\tt (1)/(10^(\tt 6))


\textsf{Because there's a fraction, the exponent is negative.}


\large\boxed{\tt (1)/(10^(\tt 6)) = 10^(\tt -6)}

-------------------------------------------------------------------------


\tt (10^(\tt 3))/(10^(\tt 9))


\textsf{Remember that when dividing exponents, they are going to subtract due to both}


\textsf{of these numbers are constants.}


\tt (10^(\tt 3))/(10^(\tt 9)) \rightarrow \tt 10^(\tt 3-9) = 10^(\tt -6)


\large\boxed{(10^(\tt 3))/(10^(\tt 9)) = 10^(\tt -6)}


\large\underline{\textsf{Hence;}}


\large\boxed{\tt (1)/(10 * 10 * 10 * 10 * 10 * 10) = 10^(\tt -6)}


\large\boxed{\tt 10^(\tt -3) * 10^(\tt 2) \\eq 10^(\tt -6)}


\large\boxed{\tt 10^(\tt -3) + 10^(\tt -3) \\eq 10^(\tt -6)}


\large\boxed{\tt (1)/(10^(\tt 6)) = 10^(\tt -6)}


\large\boxed{(10^(\tt 3))/(10^(\tt 9)) = 10^(\tt -6)}

User Alex McLean
by
8.4k points

No related questions found