Answer : The integral value is: ∫∫sin(r^2) dr dθ = -π(cos(49) - cos(9))
Given: we have 3 ≤ r ≤ 7.
The integral becomes: ∫∫sin(r^2) dr dθ
with r ranging from 3 to 7 and θ ranging from 0 to 2π.
Now we can evaluate the integral:
∫(0 to 2π) dθ ∫(3 to 7) r sin(r^2) dr
To solve the inner integral, we use substitution. Let u = r^2, so du = 2r dr.
Then: (1/2)∫(9 to 49) sin(u) du = [-(1/2)cos(u)](9 to 49) = -(1/2)[cos(49) - cos(9)]
Now, evaluate the outer integral:
∫(0 to 2π) [-(1/2)(cos(49) - cos(9))] dθ = -[(1/2)(cos(49) - cos(9))][θ](0 to 2π)
= -(1/2)(cos(49) - cos(9))(2π - 0) = -π(cos(49) - cos(9))
So the integral value is:
∫∫sin(r^2) dr dθ = -π(cos(49) - cos(9))