137k views
5 votes
I (Prove that): tan a + sec a -1 tan a - sec a +1 1 + sin a COS a​

User MoonHorse
by
9.0k points

2 Answers

2 votes

Answer: We can simplify the expression using trigonometric identities:

tan a + sec a - 1 - (tan a - sec a + 1) / (1 + sin a cos a)

= tan a + sec a - 1 - (tan a - sec a + 1) / cos^2 a

= (sin a / cos a + 1 / cos a - cos a / cos a) - [(sin a / cos a - 1 / cos a - cos a / cos a) / cos^2 a]

= (sin a + 1 - cos a) / cos a - [(sin a - 1 - cos^2 a) / cos^3 a]

= [(sin a + 1 - cos a) cos^2 a - (sin a - 1 - cos^2 a)] / cos^4 a

= [sin a cos^2 a + cos^2 a - cos a cos^2 a - sin a + 1 + cos^2 a] / cos^4 a

= (2 cos^2 a - sin a + 1) / cos^4 a

Now, we can simplify the expression further using the identity:

1 + tan^2 a = sec^2 a

tan^2 a = sec^2 a - 1

tan a + sec a - 1 = (tan^2 a + 1) / (sec a + tan a - 1)

= (sec^2 a - 1 + 1) / (sec a + tan a - 1)

= sec a / (sec a + tan a - 1)

tan a - sec a + 1 = -(sec a - tan a - 1)

= -(1 / (sec a - tan a + 1))

Substituting these values in the original expression, we get:

(sec a / (sec a + tan a - 1)) - (-1 / (sec a - tan a + 1)) / (1 + sin a cos a)

= (sec a (sec a - tan a + 1) + (tan a - 1)) / ((sec a + tan a - 1)(sec a - tan a + 1)(1 + sin a cos a))

= [(sec^2 a - sin a + 1) + (tan a - 1)] / (cos^2 a (1 + sin a cos a))

= [(2 cos^2 a - sin a + 1)] / (cos^4 a (1 + sin a cos a))

Thus, we have simplified the given expression to (2 cos^2 a - sin a + 1) / (cos^4 a (1 + sin a cos a)).

Explanation:

User Lei Li
by
7.0k points
4 votes


(tanA+secA-1)/(tanA-secA+1)=(1+sinA)/cos A

multiply LHS by cosA /cosA to get


(sinA+1-cosA) / (sinA-1+cosA)

multiply again by cosA/cosA to get


(sinA.cosA+cosA-cos^2A) / cosA(sinA-1+cosA)


= ( cosA(1+sinA) - (1-sin^2A) ) / cosA(sinA-1+cosA)


= ( cosA(1+sinA) - (1+sinA)(1-sinA) ) / cosA(sinA-1+cosA)


= ( (1+sinA)(cosA-1+sinA) ) / cosA(sinA-1+cosA)


= \bold{(1+sinA)/cosA}

User Mista
by
8.0k points

No related questions found