Answer:
The probability of being dealt a 6 or a red card is 20/52 or 5/13.
Explanation:
A standard deck of 52 cards has 13 cards of each suit (hearts, diamonds, clubs, and spades) and 4 cards of each rank (2 through 10, jack, queen, king, and ace).
To find the probability of being dealt a 6 or a red card, we need to count the number of cards that meet either criterion and divide by the total number of cards in the deck.
There are 4 sixes in the deck (one in each suit), and there are 26 red cards (13 hearts and 13 diamonds), but we need to subtract the red six of hearts to avoid counting it twice. Therefore, the number of cards that meet either criterion is:
4 + 26 - 1 = 29
The total number of cards in the deck is 52. Therefore, the probability of being dealt a 6 or a red card is:
P(6 or red) = 29/52
We can simplify this fraction by dividing the numerator and denominator by their greatest common factor (1):
P(6 or red) = 29/52 = 5/13
Therefore, the probability of being dealt a 6 or a red card is 5/13 or approximately 0.38.