Answer:
We can use trigonometric identities to simplify both sides of the equation and determine whether they are equal.
First, we can use the identity cos(2θ) = cos^2(θ) - sin^2(θ) to rewrite the left-hand side of the equation:
cos(2∅-18°) = cos^2(∅-9°) - sin^2(∅-9°)
Next, we can use the identity tan(θ) = sin(θ) / cos(θ) to rewrite the right-hand side of the equation:
tan 54° = sin 54° / cos 54°
Now we can substitute these expressions into the original equation and simplify:
cos^2(∅-9°) - sin^2(∅-9°) = sin 54° / cos 54°
Using the identity sin^2(θ) + cos^2(θ) = 1, we can rewrite the left-hand side of the equation as:
cos^2(∅-9°) - sin^2(∅-9°) = cos 2(∅-9°)
So the equation becomes:
cos 2(∅-9°) = sin 54° / cos 54°
Using the identity sin(θ - φ) = sin θ cos φ - cos θ sin φ, we can rewrite the right-hand side of the equation as:
sin 54° / cos 54° = sin(60° - 6°) / cos(60° - 6°) = [sin 60° cos 6° - cos 60° sin 6°] / [cos 60° cos 6° + sin 60° sin 6°] = tan 6°
Therefore, the equation simplifies to:
cos 2(∅-9°) = tan 6°
We can solve for ∅ by using the inverse cosine function on both sides:
2(∅-9°) = cos^-1(tan 6°)
∅-9° = 0.3807
∅ = 9.3807°
So the equation cos(2∅-18°) = Tan 54° is true when ∅ is approximately 9.3807 degrees