Answer: the appropriate tow velocity for the 2-meter long model ship is approximately 1.416 m/s
Step-by-step explanation:
To determine the appropriate tow velocity for the model ship, we can use the concept of dynamic similarity, which involves maintaining a constant Froude number for both the actual ship and the model ship. The Froude number (Fr) is a dimensionless number used in fluid mechanics to compare the influence of gravity and inertia forces in fluid flow. It is defined as:
Fr = V / √(gL)
Where:
Fr = Froude number
V = velocity of the ship or model
g = acceleration due to gravity (approximately 9.81 m/s²)
L = length of the ship or model
Since we want the Froude numbers to be the same for both the actual ship and the model ship, we can set up the following equation:
Fr_ship = Fr_model
For the actual ship:
Length (L_ship) = 100 m
Velocity (V_ship) = 10 m/s
For the model ship:
Length (L_model) = 2 m
Velocity (V_model) = unknown
Now, we can set up the equation:
(V_ship / √(g * L_ship)) = (V_model / √(g * L_model))
Plug in the given values:
(10 / √(9.81 * 100)) = (V_model / √(9.81 * 2))
Now, we can solve for V_model:
(10 / √981) = (V_model / √19.62)
(10 / 31.30495) = (V_model / 4.43041)
0.31961 = V_model / 4.43041
V_model ≈ 1.416 m/s
So, the appropriate tow velocity for the 2-meter long model ship is approximately 1.416 m/s to maintain dynamic similarity with the actual ship.