Answer:
Sqrt(6)/Sqrt(2) can be simplified to Sqrt(62)/Sqrt(22) = Sqrt(12)/2
24/Sqrt(2) can be simplified to 24Sqrt(2)/2 = 12Sqrt(2)
2Sqrt(48) can be simplified to 2Sqrt(163) = 24Sqrt(3) = 8Sqrt(3)
3Sqrt(8) can be simplified to 3Sqrt(42) = 32Sqrt(2) = 6Sqrt(2)
So the expression becomes:
Sqrt(12)/2 - 12Sqrt(2) + 8Sqrt(3) - 6*Sqrt(2)
Now, we can simplify it further by combining like terms:
Sqrt(12) can be simplified to Sqrt(43) = 2Sqrt(3)
-12Sqrt(2) - 6Sqrt(2) = -18*Sqrt(2)
So the expression simplifies to:
2Sqrt(3)/2 - 18Sqrt(2) + 8Sqrt(3)
= Sqrt(3) - 18Sqrt(2) + 8Sqrt(3)
= 9Sqrt(3) - 18*Sqrt(2)