165k views
3 votes
Evaluate tan 75° and tan 165° without using a calculator or tables.

The answer is 2 +
√(3), -2 +
√(3)

1 Answer

3 votes

Answer:


\tan 75^(\circ)=2+√(3)


\tan 165^(\circ)=-2+√(3)

Explanation:

Tangent addition formula


\boxed{\tan (A + B)=(\tan A + \tan B)/(1 - \tan A \tan B)}

To evaluate tan 75°, we can use the tangent addition formula.

If A + B = 75° and 30° + 45° = 75°, then:

  • A = 30°
  • B = 45°

Substitute these values into the formula:


\implies\tan (30^(\circ) +45^(\circ))=(\tan 30^(\circ) + \tan 45^(\circ))/(1 - \tan 30^(\circ) \tan 45^(\circ))


\textsf{As\;\;$\tan 30^(\circ) = (√(3))/(3)$\;\;and\;\;$\tan 45^(\circ)= 1$,\;substitute\;these\;values\;into\;the\;formula:}


\implies\tan (30^(\circ) +45^(\circ))=((√(3))/(3) + 1)/(1 - (√(3))/(3) \cdot 1)

Simplify:


\implies\tan (30^(\circ) +45^(\circ))=((√(3))/(3) + 1)/(1 - (√(3))/(3))


\implies\tan (30^(\circ) +45^(\circ))=((√(3))/(3) + (3)/(3))/((3)/(3) - (√(3))/(3))


\implies\tan (30^(\circ) +45^(\circ))=((3+√(3))/(3))/((3-√(3))/(3))


\implies\tan (30^(\circ) +45^(\circ))=(3+√(3))/(3-√(3))

To rationalize the denominator, multiply the numerator and denominator by the conjugate of the denominator:


\implies\tan (30^(\circ) +45^(\circ))=((3+√(3))(3+√(3)))/((3-√(3))(3+√(3)))

Simplify:


\implies\tan (30^(\circ) +45^(\circ))=(9+6√(3)+3)/(9-3)


\implies\tan (30^(\circ) +45^(\circ))=(12+6√(3))/(6)


\implies\tan (30^(\circ) +45^(\circ))=(12)/(6)+(6√(3))/(6)


\implies\tan (30^(\circ) +45^(\circ))=2+√(3)


\implies\tan 75^(\circ)=2+√(3)


\hrulefill

To evaluate tan 165°, we can use the tangent addition formula.

If A + B = 165° and 120° + 45° = 165°, then:

  • A = 120°
  • B = 45°

Substitute these values into the formula:


\implies\tan (120^(\circ) +45^(\circ))=(\tan 120^(\circ) + \tan 45^(\circ))/(1 - \tan 120^(\circ) \tan 45^(\circ))

As tan 120° = -√3 and tan 45° = 1, substitute these values into the formula:


\implies\tan (120^(\circ) +45^(\circ))=(-√(3)+ 1)/(1 - (-√(3)) \cdot 1)

Simplify:


\implies\tan (120^(\circ) +45^(\circ))=(1-√(3))/(1 +√(3))

To rationalize the denominator, multiply the numerator and denominator by the conjugate of the denominator:


\implies\tan (120^(\circ) +45^(\circ))=((1-√(3))(1-√(3)))/((1 +√(3))(1-√(3)))

Simplify:


\implies\tan (120^(\circ) +45^(\circ))=(1-2√(3)+3)/(1-3)


\implies\tan (120^(\circ) +45^(\circ))=(4-2√(3))/(-2)


\implies\tan (120^(\circ) +45^(\circ))=(4)/(-2)-(2√(3))/(-2)


\implies\tan (120^(\circ) +45^(\circ))=-2+√(3)


\implies\tan 165^(\circ)=-2+√(3)

User AlexZd
by
8.6k points