500,720 views
40 votes
40 votes
If a+b+c= 7, solve for x: ons √√x-1-b-c + a √x-1-c-a b √x-1-a-b C 3​

If a+b+c= 7, solve for x: ons √√x-1-b-c + a √x-1-c-a b √x-1-a-b C 3​-example-1
User Blatinox
by
3.3k points

1 Answer

29 votes
29 votes

Answer:50

Explanation:

(\sqrt{x-1} -b-c)/a +(\sqrt{x-1}-c-a)/b+ (\sqrt{x-1}-a-b)/c= 3\\\\

[(\sqrt{x-1} -b-c)*b*c +(\sqrt{x-1}-c-a)*a*c+ (\sqrt{x-1}-a-b)*a*b]/a*b*c= 3\\\

(a*b+b*c+a*c)(\sqrt{x-1)}-b^{2} *c-c^{2}*b-c^{2} *a-a^{2} *c-a^{2}*b-b^{2}*a= 3*a*b*c\\\\

(a*b+b*c+a*c)(\sqrt{x-1)}-b*c(b+c)-c*a(c+a)-a*b(a+b)=3*a*b*c\\

\\

since \\

given that \\

a+b+c=7,\\

a+b =7-c, b+c= 7-a, a+c= 7-b\\

substitute in the given equation\\\\

(a*b+b*c+a*c)(\sqrt{x-1)}-b*c(7-a)-c*a(7-b)-a*b(7-c)=3*a*b*c\\\\

\\(a*b+b*c+a*c)(\sqrt{x-1)}-b*c(7-a)-c*a(7-b)-a*b(7-c)=3*a*b*c\\

(a*b+b*c+a*c)(\sqrt{x-1)}-7(b*c+c*a+a*b)+3*a*b*c=3*a*b*c\\

\\

3*a*b*c \\

cancels\\\\

(a*b+b*c+a*c)((\sqrt{x-1)}-7)=0\\

\\

(\sqrt{x-1)}-7)=0\\

\sqrt{x-1)}=7\\

x-1=49\\

x=50

User Shrage Smilowitz
by
3.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.