60.0k views
2 votes
M is directly proportional to r²

When r = 5, M = 200

Work out the value of r when M = 288.

1 Answer

5 votes


\:\:\:\:\:\:\;\star\small \underline{ \boxed{ \sf{ \pmb{ m∝ r^2 }}}}\\


\:\:\:\:\:\:\longrightarrow \sf {m = Kr^2}\\

On substituting r=5 and m=200


\:\:\:\:\:\:\longrightarrow \sf {200=K * \bigg(5\bigg)^2}\\


\:\:\:\:\:\:\longrightarrow \sf {200 = K* 25}\\


\:\:\:\:\:\:\longrightarrow \sf {K = (200)/(25)}\\


\:\:\:\:\:\:\longrightarrow \sf {K = \cancel{(200)/(25)}}\\


\:\:\:\:\:\:\longrightarrow \sf {\underline{\underline{\pink{k =8}}}}\\

Now, we are asked to find out the value of r when m is equal to 288.


\:\:\:\:\:\:\longrightarrow \sf {m = Kr^2}\\


\sf \underline{On \:substituting \: k \: = 8\: }\\


\:\:\:\:\:\:\longrightarrow \sf {288 = 8* r^2}\\


\:\:\:\:\:\:\longrightarrow \sf {r^2 = \cancel{(288)/(8)}}\\


\:\:\:\:\:\:\longrightarrow \sf {r^2 =36}\\


\:\:\:\:\:\:\longrightarrow \sf {r = √(36)}\\


\:\:\:\:\:\:\longrightarrow \boxed{ \tt{ \pmb{ \pink{r = 6 }}}}\\


\\ \therefore \underline{ \cal{ \pmb{ \:Value \: of \: r\: is \: \frak{\pink{ 6 \: }.\: When \: m \:= 288 }}}}\\

User Andy Friese
by
7.8k points

No related questions found