2.5k views
2 votes
Use the information given below to find cos(α+β)

Use the information given below to find cos(α+β)-example-1
User Granoeste
by
8.0k points

1 Answer

4 votes

Answer:


\cos(\alpha + \beta)=-(171)/(221)

Explanation:

We can find cos(α + β) by using the trigonometric identity:


\boxed{\cos(\alpha +\beta)=\cos \alpha \cos \beta - \sin \alpha \sin \beta}

Therefore, we need to find cos α and cos β.

To find the cosine of an angle given the sine of an angle, we can use the identity:


\boxed{\sin^2 \theta + \cos^2 \theta=1}

Rearrange the original identity to isolate cos θ:


\implies \cos \theta=√(1-\sin^2 \theta)

Substitute the given values of sin α and sin β into the rearranged identity to find the value of cos α and cos β:


\begin{aligned}\implies \cos \alpha&=√(1-\sin^2 \alpha)\\\\&=\sqrt{1-\left(-(12)/(13)\right)^2}\\\\&=\sqrt{1-(144)/(169)}\\\\&=\sqrt{(25)/(169)}\\\\&=(5)/(13)\end{aligned}
\begin{aligned}\implies \cos \beta&=√(1-\sin^2 \beta)\\\\&=\sqrt{1-\left(-(8)/(17)\right)^2}\\\\&=\sqrt{1-(64)/(289)}\\\\&=\sqrt{(225)/(289)}\\\\&=(15)/(17)\end{aligned}

Cosine is negative in Quadrants II and III, and positive in Quadrants I and IV.

Therefore, as angle α is in Quadrant III, cos α is negative:


\implies \cos \alpha = -(5)/(13)

Therefore, as angle β is in Quadrant IV, cos β is positive:


\implies \cos \beta=(15)/(17)

Finally, substitute the values into the identity cos(α + β):


\begin{aligned}\implies\cos(\alpha + \beta)&=\cos \alpha \cos \beta - \sin \alpha \sin \beta}\\\\&=\left(-(5)/(13)\right)\cdot (15)/(17) - \left(-(12)/(13)\right) \cdot \left(-(8)/(17)\right)\\\\&=-(75)/(221)-(96)/(221)\\\\&=-(171)/(221)\end{aligned}

Solution

Therefore, the exact answer is:


\cos(\alpha + \beta)=-(171)/(221)

User Sympatric Greg
by
8.2k points

No related questions found