Explanation:
- 2x² - 8 = 2(x - 2)(x + 2)
- 2x² + 8x + 6 = 2(x + 1)(x + 3)
- 3n² + 9n - 30 = 3(n - 2)(n + 5)
- 6x² - 26x - 20 = 2(3x - 5)(x - 4)
- 2x² + 12x - 80 = 2(x + 10)(x - 4)
- 5t² + 15t + 10 = 5(t + 1)(t + 2)
- 8n² - 18 = 2(2n + 3)(2n - 3)
- 14x² + 7x - 21 = 7(2x - 3)(x + 1)
- 4x² + 16x + 16 = 4(x + 2)(x + 2) = 4(x + 2)²
- 18x + 12x² + 2x³ = 2x(1 + 3x)(2 + x)
- 2x - 2xy² = 2x(1 - y²)
- 3t³ - 27t = 3t(t - 3)(t + 3)
- 24a² - 30a + 9 = (4a - 3)²
- 10x² + 15x - 10 = 5(2x - 1)(x + 2)
- 3x² - 42x + 147 = 3(x - 7)(x - 7) = 3(x - 7)²
- 4x4 - 4x² = 4x²(x + 1)(x - 1)
In the above factorizations, "prime" refers to an expression that cannot be factored any further over the integers.