51.8k views
1 vote

(3m+15)/(m^2)=(m+1)/(m)

User Extempl
by
8.8k points

1 Answer

4 votes

Answer:

m1 = 5

m2 = -3

Explanation:


\frac{3m + 15}{ {m}^(2) } = (m + 1)/(m)

Use the property of the proportion (cross-multiply):


{m}^(2) (m + 1) = m(3m + 15)


{m}^(3) + {m}^(2) = 3 {m}^(2) + 15m


3 {m}^(2) + 15m - {m}^(2) - {m}^(3) = 0


- {m}^(3) + 2 {m}^(2) + 15m = 0


m( - {m}^(2) + 2m + 15) = 0


m = 0 \: \: \: or \: \: \: - {m}^(2) + 2m + 15 = 0

Let's solve this quadratic equation:


{ - m}^(2) + 2m + 15 = 0

a = -1, b = 2, c = 15


d = {b}^(2) - 4ac = 4 - 4 * ( - 1) * 15 = 4 + 60 = 64 > 0


m1 = ( - b - √(d) )/(2a) = ( - 2 - 8)/(2 * ( - 1)) = ( - 10)/( - 2) = 5


m2 = ( - b + √(d) )/(2a) = ( - 2 + 8)/(2 * ( - 1)) = (6)/( - 2) = - 3

User Elad Gasner
by
8.1k points

No related questions found