185k views
5 votes
Determine the absolute minimum value of
f(x) = cos² (x) + sin(x)
on [0, 2π].

User Hroest
by
8.6k points

1 Answer

6 votes

Answer:


f_(min)=f((3\pi)/(2))=-1.

Explanation:

1) f'[x]=cos[x]-2sin[x]cos[x];

2) f'[x]=0, ⇒ cos[x]-2sin[x]cos[x]=0;


\left \ [ {{cos[x]=0} \atop {sin[x]=0.5}} \right. \ = > \ \left \ [ {{x=(\pi)/(2)+\pi*n } \atop {x=(-1)^(n+1)*(\pi)/(6) +\pi*n}} \right.


3) \ x=(\pi)/(2) +\pi*n \ -min, \ = > f_(min)|_{x=(\pi)/(2) ;(3\pi)/(2) }:\\\left \ [ {{f[(\pi)/(2)]=1} \atop {f[(3\pi)/(2)] =-1}} \right. = > \ f_(min)=f[(3\pi)/(2)]=-1.

4) finally, f(min)=-1.

User RStyle
by
7.5k points