To find the sum of vectors u and v, we can add their components separately:
(u + v)x = (7cos 310° + 2cos 115°)
(u + v)y = (7sin 310° + 2sin 115°)
Using a calculator to evaluate these expressions, we get:
(u + v)x = -2.16
(u + v)y = 8.48
The magnitude of the sum vector u + v can be found using the Pythagorean theorem:
|u + v| = √((u + v)x^2 + (u + v)y^2)
= √(-2.16^2 + 8.48^2)
= √(72.3584)
= 8.51
The direction of the sum vector u + v can be found using the inverse tangent function:
θ = tan^(-1)((u + v)y / (u + v)x)
= tan^(-1)(8.48 / -2.16)
= tan^(-1)(-3.928571428571429)
= 143.13°
Rounding the magnitude to the nearest tenth and the direction to the nearest degree, we get:
u + v = 8.5 (cos 143°, sin 143°)
Therefore, the sum of vectors u and v is equal to 8.5 (cos 143°, sin 143°).