Answer:
z=8
Explanation:
Considering the triangle on the RHS,
Let the Unknown side be "x"
from pythagora's theorem,
x ^ 2 = 4 ^ 2 - 2 ^ 2 x = √(4 ^ 2 - 2 ^ 2)
x = √(16 - 4)
x = √12
cos alpha = 2/4 , alpha = arccos(2/4)
alpha = 60°
< ABC + theta + alpha = 180°
theta = 180 - alpha - <ABC
theta = 180 - 60 - 90
theta = 30°
Now Considering the triangle on the LHS,
tan 30 = (√12)/y
y = (√12)/(tan 30°)
y = 6
z = y + 2
z = 8