66.0k views
1 vote
50 POINTS WILL VOTTEEE!!!!!!!!!!!!

Which of the following shows the simplified function of sine squared x over the quantity 1 minus cosine x end quantity question mark

1 + cos x
1 − cos x
1 + sin x
1 − sin x

1 Answer

5 votes

Given:


\frac{\text{sin}^2x}{1+\text{cos}x}

To determine the simplified function of the above given, we first use the Pythagorean identity:


\text{cos}^2(x)+\text{sin}^2(x)=1

Hence,


\text{sin}^2x=1-\text{cos}^2x

We plug in what we know:


\frac{\text{sn}^2x}{1+\text{cos}x} =\frac{1-\text{cos}^2x}{1+\text{cos}x}


\text{Simplify and rearrange}


=\frac{-(\text{cos}^2x-1)}{1+\text{cos}x}


=\frac{-(\text{cos}x+1)(\text{cos}x-1)}{1+\text{cos}x}


=-(\text{cos}x-1)


=-\text{cos}x+1


=1-\text{cos}x

Therefore, the answer is:


1-\text{cos} \ x

User Frightera
by
7.8k points

No related questions found