41.8k views
3 votes
Solve:
3 \sqrt { 4 x + 1 } + 4 x \sqrt { 3 x - 2 } = 3 x ^ { 2 } + 4 x + 5


User Venelin
by
8.3k points

2 Answers

4 votes
The answer is that z=2
User Bobanahalf
by
8.1k points
3 votes

Explanation:

Solution

Multiply by 2


\tt{} {6x}^(2) + 8x + 10 - 6 √(4x + 1) - 8x √(3x - 2) = 0


\tt{}\to\begin{pmatrix}3 - √(4x+1)\end{pmatrix}^(2)+4\begin{pmatrix}x-√(3x-2)\end{pmatrix}^(2)+2\begin{pmatrix}x - 2\end{pmatrix}^(2) = 0


\tt{} \to \begin{cases}x - 2 = 0 \\ 3 - √(4x + 1) = 0 \\x - √(3x - 2) = 0\end{cases}

X = 2 satisfy the above system of equations

So, x = 2 is the unique solution.

Good studies

User Jeremy Hicks
by
8.1k points