175k views
4 votes

(cos9 + \sin9 )/(cos9 - sin9) = tan54
Prove the above question​

1 Answer

3 votes

Solution:

To Prove :


\sf (\cos9\degree + \sin9\degree )/(\cos9\degree- \sin9\degree) = \tan54\degree \\ \\


\sf LHS = (\cos9\degree + \sin9\degree )/(\cos9\degree- \sin9\degree) \\ \\


\sf RHS = \tan54\degree \\ \\

Solving for LHS :

Divide numerator and denominator by cos9°


\longrightarrow \: \: \sf\frac { ( \cos9\degree)/( \cos9\degree) + { (\sin9)/( \cos9) }}{ ( \cos9\degree )/( \cos9\degree) - { ( \sin9\degree)/( \cos9\degree)}} \\ \\


\longrightarrow \: \: \sf\frac{1 + { \frac {\sin9\degree}{ \cos9\degree}} }{1 - { ( \sin9\degree)/( \cos9\degree) }} \\ \\


\longrightarrow \: \: \sf (1 + \tan9\degree)/(1 - \tan9\degree) \\ \\


\longrightarrow \: \: \sf{ ( \tan45 \degree + \tan9\degree)/(1 - \tan45 \degree \tan9 \degree)} \: \: \: \: \: \: \: \sf \red{\bigg( \tan(A + B) = ( \tan A + \tan B)/(1 - \tan A \tan B) \bigg)} \\ \\


\longrightarrow \: \: \sf \tan(45\degree + 9\degree) \\ \\


\longrightarrow \: \: \sf \tan54 \degree

LHS = RHS

Hence, proved!!

User Pyjamas
by
8.0k points

Related questions

1 answer
22 votes
87.9k views
1 answer
9 votes
84.8k views