173k views
5 votes
Compute g at a distance of 7.3 x 108 m from the center of a spherical object whose mass is 3.0 x 1027 kg.

1 Answer

6 votes

Answer:

Approximately
0.38\; {\rm m\cdot s^(-2)}, assuming that the density of the sphere is uniform.

Step-by-step explanation:

Under the assumptions, the gravitational field strength
g outside the sphere can be calculated as if the sphere is a point mass at its center:


\begin{aligned}g &= (G\, M)/(r^(2))\end{aligned}, where:


  • G \approx 6.67 * 10^(-11)\; {\rm m^(3)\, kg^(-1)\, s^(-2)} is the gravitational constant,

  • M = 3.0 * 10^(27)\; {\rm kg} is the total mass of the sphere, and

  • r = 7.3* 10^(8)\; {\rm m} is the distance from the center of the sphere.

Substitute in these values and evaluate to find the value of
g:


\begin{aligned}g &= (G\, M)/(r^(2)) \\ &\approx \frac{(6.67* 10^(-11)\; {\rm m^(3)\, kg^(-1)\, s^(-2)})\, (3.0 * 10^(27)\; {\rm kg})}{(7.3 * 10^(8)\; {\rm m})^(2)} \\ &= ((6.67 * 10^(-11))\, (3.0 * 10^(27)))/((7.3 * 10^(8))^(2))\; {\rm m\cdot s^(-2)} \\ &\approx 0.38\; {\rm m\cdot s^(-2)}\end{aligned}.

User Floribon
by
8.6k points