Answer:
![\boxed {\boxed {\sf a= 705.6 \ units^2 }}](https://img.qammunity.org/2022/formulas/mathematics/high-school/utjtg1yknwl8acx1s9xbyzs5knyhudvxjy.png)
Explanation:
Since we are given the central angle in radians, we should use this formula for the sector area:
![a=(1)/(2)r^2 \theta](https://img.qammunity.org/2022/formulas/mathematics/high-school/l6v8rl9b8jayr3c08pp8hzjv7v8tl1sdj9.png)
where r is the radius and θ is the angle in radians.
The radius is 14 units and the angle is 7.2 radians.
![r= 14 \ units \\\theta= 7.2](https://img.qammunity.org/2022/formulas/mathematics/high-school/iqegfwpq3yq2dq6mfvr8gogujusku3l450.png)
Substitute the values into the formula.
![a= (1)/(2) (14 \ units)^2 (7.2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/gw8jz14li2lr4s795jlxkzc4uf0xrmm4z7.png)
Solve the exponent.
- (14 units)²= 14 units* 14 units =196 units²
![a=( 1)/(2) (196 \ units^2)(7.2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/gl8xibq61k9t78qezxi0ud7j3utmzal81w.png)
![a=( 1)/(2)(1411.2 \ units^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/pb3s4m49f2sh6mnhkzuo9vnnckglefio9f.png)
Multiply by 1/2 or divide by 2.
![a= 705.6 \ units^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/6w8qnscqgcjrftast9eis6kxah2wjnnsto.png)
The area of the sector is 705.6 square units.