Answer:
a1 = 1875
Explanation:
You want a1 for the geometric series that has r = 2/5, an = 120, and Sn = 3045.
Series relations
The n-th term of the geometric series with first term a1 and common ratio r is ...
an = a1·r^(n-1)
The sum of the first n terms of the geometric series is ...
Sn = a1·(r^n -1)/(r -1)
Application
We can use the expression for an to substitute for r^n in the sum equation:

__
Additional comment
The sum is of the first four terms:
1875 +750 +300 +120 = 3045
We can also find this by working backward. The previous term is 5/2 times the current term. We need to find the terms that have a sum of 3045.
120 +300 +750 +1875 +4687.5 +...
Clearly, 5 terms is too many. The sum of the first 4 terms of the backward series is 3045, so we know n=4 and the first term is 1875—the last term of our 4-term backward series.