158k views
0 votes
The angles in a right triangle are 5x-3 , 9x , 3x+13 , show that the triangle is right angled

User Oge
by
8.4k points

1 Answer

6 votes

It’s given, the angles in a right triangle are 5x-3 , 9x , 3x+13 . We have asked to prove that the given triangle is a right-angled triangle.

  • Proof:-


\small \underline{ \boxed{ \sf{ \bigg(5x-3\bigg)°+\bigg(9x\bigg)°+\bigg(3x+13\bigg)°= 180° }}}\\


\sf \because\underline{ \:The\: three \:interior \:angles \:of \:any \:triangle \:add \:up \:to\: \red{180°}}\\


\:\:\:\:\:\:\longrightarrow \sf { \bigg(17x +10 \bigg)°= 180°}\\


\:\:\:\:\:\:\longrightarrow \sf { \bigg(17x\bigg)°= 180°-10°}\\


\:\:\:\:\:\:\longrightarrow \sf { \bigg(17x\bigg)°= 170°}\\


\:\:\:\:\:\:\longrightarrow \sf {x = (170°)/(17°)}\\


\:\:\:\:\:\:\longrightarrow \sf {x = (17°* 10°)/(17°)}\\


\:\:\:\:\:\:\longrightarrow \sf {x = \frac{\cancel{17°}* 10°}{\cancel{17°}}}\\


\:\:\:\:\:\:\longrightarrow \boxed{ \tt{ \pmb{ \red{x =10°}}}}\\


\underline{\rm{\sf 1st\:Angle:-}}


\sf\longrightarrow \bigg(5x-3\bigg)° = \bigg(5* 10 -3 \bigg)°=\underline{ \pink{47°}}\\


\underline{\rm{\sf 2nd\:Angle:-}}


\sf \longrightarrow 9x° =\bigg( 9* 10\bigg)° =\boxed{\underline{\pink{90°}}}\\


\underline{\rm{\sf 3rd\:Angle:-}}


\sf \longrightarrow \bigg(3x+3\bigg)° =\bigg( 3* 10+13 \bigg)°= \underline{\pink{43°}}\\

Since, one of the angles is 90°,henceforth we can say that the given triangle is a right-angled triangle.


\:\:\:\:\:\:\\ \underline{ \cal{ \pmb{ \: \frak{\purple{Proved! \: }. }}}}\\

User JonasG
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories