158k views
0 votes
The angles in a right triangle are 5x-3 , 9x , 3x+13 , show that the triangle is right angled

User Oge
by
8.4k points

1 Answer

6 votes

It’s given, the angles in a right triangle are 5x-3 , 9x , 3x+13 . We have asked to prove that the given triangle is a right-angled triangle.

  • Proof:-


\small \underline{ \boxed{ \sf{ \bigg(5x-3\bigg)°+\bigg(9x\bigg)°+\bigg(3x+13\bigg)°= 180° }}}\\


\sf \because\underline{ \:The\: three \:interior \:angles \:of \:any \:triangle \:add \:up \:to\: \red{180°}}\\


\:\:\:\:\:\:\longrightarrow \sf { \bigg(17x +10 \bigg)°= 180°}\\


\:\:\:\:\:\:\longrightarrow \sf { \bigg(17x\bigg)°= 180°-10°}\\


\:\:\:\:\:\:\longrightarrow \sf { \bigg(17x\bigg)°= 170°}\\


\:\:\:\:\:\:\longrightarrow \sf {x = (170°)/(17°)}\\


\:\:\:\:\:\:\longrightarrow \sf {x = (17°* 10°)/(17°)}\\


\:\:\:\:\:\:\longrightarrow \sf {x = \frac{\cancel{17°}* 10°}{\cancel{17°}}}\\


\:\:\:\:\:\:\longrightarrow \boxed{ \tt{ \pmb{ \red{x =10°}}}}\\


\underline{\rm{\sf 1st\:Angle:-}}


\sf\longrightarrow \bigg(5x-3\bigg)° = \bigg(5* 10 -3 \bigg)°=\underline{ \pink{47°}}\\


\underline{\rm{\sf 2nd\:Angle:-}}


\sf \longrightarrow 9x° =\bigg( 9* 10\bigg)° =\boxed{\underline{\pink{90°}}}\\


\underline{\rm{\sf 3rd\:Angle:-}}


\sf \longrightarrow \bigg(3x+3\bigg)° =\bigg( 3* 10+13 \bigg)°= \underline{\pink{43°}}\\

Since, one of the angles is 90°,henceforth we can say that the given triangle is a right-angled triangle.


\:\:\:\:\:\:\\ \underline{ \cal{ \pmb{ \: \frak{\purple{Proved! \: }. }}}}\\

User JonasG
by
8.5k points

No related questions found