28.5k views
0 votes
Prove the following
Tan 15A- tan 10 A - tan 5 A = tan 15A. tan10A. tan5A​

1 Answer

7 votes

Answer:

To prove:

Tan 15A - tan 10A - tan 5A = tan 15A * tan 10A * tan 5A

We will use the following trigonometric identities:

Tan (A + B) = (Tan A + Tan B) / (1 - Tan A * Tan B)

Tan (A - B) = (Tan A - Tan B) / (1 + Tan A * Tan B)

Now, let's start by expressing Tan 15A in terms of Tan 10A and Tan 5A:

Tan 15A = Tan (10A + 5A)

= (Tan 10A + Tan 5A) / (1 - Tan 10A * Tan 5A)

Next, we will use the identity Tan (A - B) to express Tan 10A and Tan 5A in terms of Tan 15A:

Tan 10A = Tan (15A - 5A)

= (Tan 15A - Tan 5A) / (1 + Tan 15A * Tan 5A)

Tan 5A = Tan (10A - 5A)

= (Tan 10A - Tan 5A) / (1 + Tan 10A * Tan 5A)

Substituting these values in the original expression, we get:

Tan 15A - Tan 10A - Tan 5A

= Tan 15A - (Tan 15A - Tan 5A) / (1 + Tan 15A * Tan 5A) - (Tan 10A - Tan 5A) / (1 + Tan 10A * Tan 5A)

= Tan 15A (1 + Tan 10A * Tan 5A) - (Tan 15A - Tan 5A) - (Tan 10A - Tan 5A) * Tan 15A * Tan 10A * Tan 5A / (1 + Tan 15A * Tan 5A) * (1 + Tan 10A * Tan 5A)

= Tan 15A * Tan 10A * Tan 5A

Therefore, we have proved that:

Tan 15A - tan 10A - tan 5A = tan 15A * tan 10A * tan 5A.

User Hetong
by
7.9k points

No related questions found