200k views
1 vote
Resolve it into a partial fraction

Resolve it into a partial fraction-example-1
User Damodar P
by
9.6k points

1 Answer

1 vote

Answer:


(7+x)/((1+x)(1+x^2))\equiv (3)/(1+x)-(3x-4)/(1+x^2)

Explanation:

As the denominator has a linear factor and irreducible quadratic factor, the partial fraction form is:


\boxed{(N(x))/((ax+b)(x^2+bx+c)) \equiv (A)/(ax+b)+(Bx+C)/(x^2+bx+c)}

Therefore, the given algebraic fraction can be written as partial fractions of the form:


(7+x)/((1+x)(1+x^2))\equiv (A)/(1+x)+(Bx+C)/(1+x^2)

Add the partial fractions:


(7+x)/((1+x)(1+x^2))\equiv (A(1+x^2)+(Bx+C)(1+x))/((1+x)(1+x^2))

Cancel the denominators from both sides of the original identity, so the numerators are equal:


7+x \equiv A(1+x^2)+(Bx+C)(1+x)

Substitute a value of x which make one of the expressions in the brackets equal zero to get rid of all but one of A, B and C.


\begin{aligned}x=-1 \implies 7+(-1) &=A(1+(-1)^2)+(Bx+C)(1+(-1))\\7-1&=A(1+1)+(Bx+C)(0)\\6 & =2A\\3&=A\end{aligned}

Substitute the found value of A:


7+x \equiv 3(1+x^2)+(Bx+C)(1+x)

Substitute x = 0 and solve for C:


\begin{aligned} x=0 \implies 7+0 &=3(1+(0)^2)+(B(0)+C)(1+0)\\ 7&=3(1)+C(1)\\7&= 3+C\\4&=C\end{aligned}

Substitute the found values of A and C:


7+x \equiv 3(1+x^2)+(Bx+4)(1+x)

Expand the right side:


\begin{aligned}7+x &\equiv 3(1+x^2)+(Bx+4)(1+x)\\7+x &\equiv 3+3x^2+Bx+Bx^2+4+4x\\7+x&\equiv(3+B)x^2+(4+B)x+7\end{aligned}

Compare the coefficients of the terms in x to solve for B:


\begin{aligned} 1&=4+B\\-3&=B\end{aligned}

Therefore:

  • A = 3
  • B = -3
  • C = 4

Finally, replace A, B and C in the original identity:


(7+x)/((1+x)(1+x^2))\equiv (3)/(1+x)+(-3x+4)/(1+x^2)


(7+x)/((1+x)(1+x^2))\equiv (3)/(1+x)-(3x-4)/(1+x^2)

User Adamasan
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories