32.5k views
3 votes
How to solve this quadratic expression

2x(x - 3) = 3 - 4x


User Jtcruthers
by
8.3k points

1 Answer

4 votes

Let's simplify the given expression at first!


\: \:\:\:\: \longrightarrow\sf {2x(x - 3) = 3 - 4x}\\


\: \:\:\:\: \longrightarrow\sf {2x^2 -6x = 3 -4x}\\


\: \:\:\:\: \longrightarrow\sf {2x^2 -6x+4x-3=0}\\

And here it is -


\: \:\:\:\: \small \underline{ \boxed{ \sf{ \pmb{ 2x^2 -2x -3 =0}}}}\\

Where-

  • a =2
  • b=-2
  • c =-3

To find the Discriminant of this equation is given by -


\longrightarrow\underline\purple{\boxed{\pmb{D = b^2-4ac}}}


\: \:\:\:\: \longrightarrow\sf { D = (-2)^2 - 4* 2* -3}\\


\: \:\:\:\: \longrightarrow\sf { D = 4 + 24}\\


\: \:\:\:\: \longrightarrow\sf { D = 28}\\

Since, D>0 hence, this equation has two distinct real roots.

Formula to be applied now is as follows-


\: \:\:\:\: \longrightarrow\underline\purple{\boxed{\pmb{ x = (-b±√D)/(2a)}}}


\: \:\:\:\: \longrightarrow\sf { x = (-(-2)± √(28))/(2 * 2)}\\


\: \:\:\:\: \longrightarrow\sf {x = (2± √(4 * 7))/(2 * 2)}\\


\: \:\:\:\: \longrightarrow\sf {x = (2± 2* √(7 ))/(2 * 2)}\\


\: \:\:\:\: \longrightarrow\sf {x = (2 (1± √(7)) )/(2 * 2)}\\


\: \:\:\:\: \longrightarrow\sf {x = \frac{\cancel{2 }(1± √(7)) }{\cancel{2 }* 2}}\\


\: \:\:\:\: \longrightarrow \boxed{ \tt{ \pmb{ \red{x = ( 1± √(7) )/( 2)}}}}\\


\\ \therefore \underline{ \cal{ \pmb{The \:value \: of \:x \: is \: \frak{\purple{ ( 1± √(7) )/( 2) \: }. }}}}\\

User Jungtaek Lim
by
7.4k points

No related questions found