35.5k views
5 votes
In the given figure, find the distance of a point A from origin.Explain why? ​

In the given figure, find the distance of a point A from origin.Explain why? ​-example-1
User NREZ
by
7.6k points

2 Answers

6 votes

Formula to find the distance between two points is given by -


\small \underline{ \boxed{ \sf{ \pmb{ Distance = √( (y_2 -y_1)^2 + (x_2-x_1)^2)}}}}\\

As per question, points are -

  • X (3,4)

  • Q(0,0)

On substituting the values :-


\: \: \: \: \: \longrightarrow \sf {Distance(XQ) = √( (0-4)^2 + (0-3)^2 )}\\


\: \: \: \: \:\longrightarrow \sf {Distance (XQ)= √( (-4)^2 + (-3)^2 )}\\


\: \: \: \: \:\longrightarrow \sf {Distance(XQ) = √( 16+9)}\\


\: \: \: \: \:\longrightarrow \sf {Distance (XQ)= √( 25) }\\


\: \: \: \: \:\longrightarrow \sf {Distance(XQ) = 5}\\


\: \: \: \: \:\longrightarrow \boxed{ \tt{ \pmb{ \red{Distance(XQ) = 5 }}}}\\


\\ \therefore \underline{ \cal{ \pmb{The \:distance \: of \: the\: two \:points \: is \: \frak{\purple{ 5.} }}}}\\

User Abhinav Aggarwal
by
8.1k points
3 votes

Answer:

distance = 5 units

Explanation:

we can calculate the distance d using the distance formula

d =
\sqrt{(x_(2)-x_(1))^2+(y_(2)-y_(1))^2 }

with (x₁, y₁ ) = (0, 0 ) and (x₂, y₂ ) = (3, 4 )

d =
√((3-0)^2+(4-0)^2)

=
√(3^2+4^2)

=
√(9+16)

=
√(25)

= 5

User Ashark
by
8.4k points

No related questions found