141k views
0 votes
Pls help

Suppose that 2.50 billion years ago, 16 moles of Potassium-40 were created as part of a rock.
i. After the rock aged 1.25 billion years, how many moles of 40K were in it?
ii. After the rock aged an additional, 1.25 billion years (i.e. present day), how many moles
of 40K were in it?

1 Answer

4 votes

The half-life of Potassium-40 is about 1.25 billion years. This means that after each half-life, the number of moles of Potassium-40 in the rock will be halved. Using this information, we can calculate the answers to the questions as follows:

i. After the rock aged 1.25 billion years, half of the original number of moles of Potassium-40 would have decayed. This means that there would be 8 moles of Potassium-40 remaining in the rock.

ii. After the rock aged an additional 1.25 billion years, another half-life would have passed, and half of the remaining 8 moles of Potassium-40 would have decayed. This means that there would be 4 moles of Potassium-40 remaining in the rock at present day (2.50 billion years + 1.25 billion years + 1.25 billion years = 3 half-lives).

Therefore, the number of moles of Potassium-40 in the rock would be 8 after 1.25 billion years and 4 after an additional 1.25 billion years (present day).

User Libertylocked
by
7.8k points