Answer:
The answer to your problem is, 22.3 ft
Explanation:
Here we can make a triangle rectangle with the following vertex:
- The student's eye level.
- The top of the flagpole
- The intersection between a horizontal line that passes through her eye level and a point in the flagpole.
The catheti of this triangle rectangle will be:
- The distance between her and the flagpole (36ft)
- The height of the flagpole minus the height of her eye level = H
- We want to find the value of H.
- We also know that the angle of elevation from her point of view is 25°.
! Tan(a) = opposite cathetus/adjacent cathetus. !
Tan(25°) = H/36ft
Solving for H we ge; Tan(25°)*36ft = H = 16.8 ft
The height of the flag pole minus the height of her eye level, then the actual height of the flagpole is:

Thus the answer is, 22.3 ft