31.1k views
0 votes
Find the area of rectangular mat length =


3 {}^(x - y)
bredth =

3 {}^(y - x)




1 Answer

2 votes

Solution :-

  • Length of rectangle is =
    \sf 3 {}^(x - y)
  • Breadth of rectangle is =
    \sf 3 {}^(y - x)
  • Area =?

We know that-


\small \underline{ \boxed{ \sf{ \frak{Area_((rectangle )) = \frak{( Length * Breadth )\:sq.units}}}}}

On substituting the values-


\longmapsto \sf Area_((rectangle )) =3^(x-y)* 3^(y-x) \\


\longmapsto \sf Area_((rectangle )) = 3^(x-y+y-x)\\


\longmapsto \sf Area_((rectangle )) =3^{\cancel{ x}-\cancel{y}+\cancel{y}-\cancel{x}}\\


\longmapsto \sf Area_((rectangle )) = 3^0\\


\longmapsto \sf Area_((rectangle )) = 1\\


\longmapsto \boxed{ \tt{ \pmb{ \red{Area_((rectangle )) = 1 \: sq.units}}}}


\\ \therefore \underline{ \cal{ \pmb{The \:area \: of \:the \: rectangle \: is \: \frak{\purple{1\: sq.units }. }}}}

User Inarighas
by
8.7k points