Answer:
We'll start with the left-hand side (LHS) of the identity, which is:
sin x (1 + cot^2 x)
We can rewrite cot^2 x as (cos x / sin x)^2, since cotangent is the reciprocal of tangent. Substituting this into the LHS, we get:
sin x (1 + (cos x / sin x)^2)
Now we can simplify the expression in the parentheses by using the identity:
tan^2 x + 1 = sec^2 x
Rearranging this identity, we get:
tan^2 x = sec^2 x - 1
Substituting this into our expression, we get:
sin x (1 + (cos x / sin x)^2) = sin x (1 + (cos^2 x / sin^2 x))
= sin x (sin^2 x / sin^2 x + cos^2 x / sin^2 x)
= sin x ((sin^2 x + cos^2 x) / sin^2 x)
= sin x (1 / sin^2 x)
= sin x / sin^2 x
= 1 / sin x
Now we'll simplify the right-hand side (RHS) of the identity, which is:
csc x
We know that csc x is the reciprocal of sin x, so we can rewrite the RHS as:
1 / sin x
This is the same as the expression we obtained for the LHS, so we have shown that:
sin x (1 + cot^2 x) = csc x
And this proves the identity!
Remember, when you're proving trigonometric identities, it's important to be familiar with the fundamental trigonometric identities and the basic algebraic rules of manipulating equations
good luck with your exam