117k views
3 votes
Pls solve these polynomial

(2x-4)(x+5)

(X-2^2)

(3x+1)^2

(3x-1)(2x^2+5x-4)

User Jceddy
by
8.2k points

1 Answer

3 votes

1- (2x-4)(x+5)

Multiplying using the distributive property, we get:

(2x-4)(x+5) = 2x(x) + 2x(5) - 4(x) - 4(5)

= 2x^2 + 10x - 4x - 20

= 2x^2 + 6x - 20

Therefore, (2x-4)(x+5) simplifies to 2x^2 + 6x - 20.

2-(x-2)^2

Expanding using the formula for the square of a binomial, we get:

(x-2)^2 = x^2 - 4x + 4

Therefore, (x-2)^2 simplifies to x^2 - 4x + 4.

3- (3x+1)^2

Expanding using the formula for the square of a binomial, we get:

(3x+1)^2 = (3x)^2 + 2(3x)(1) + (1)^2

= 9x^2 + 6x + 1

Therefore, (3x+1)^2 simplifies to 9x^2 + 6x + 1.

4- (3x-1)(2x^2+5x-4)

Using the distributive property, we can multiply each term in the first polynomial by each term in the second polynomial:

(3x-1)(2x^2+5x-4) = 3x(2x^2) + 3x(5x) - 3x(4) - 1(2x^2) - 1(5x) + 1(4)

= 6x^3 + 15x^2 - 12x - 2x^2 - 5x + 4

= 6x^3 + 13x^2 - 17x + 4

Therefore, (3x-1)(2x^2+5x-4) simplifies to 6x^3 + 13x^2 - 17x + 4.

User Akshay Sunderwani
by
8.5k points

No related questions found