Answer:
Explanation:
y = x³ - 27x
(i). Domain: x ∈ ( - ∞ , ∞ )
(ii). f'(x) = 3x² - 27 ; f''(x) = 6x
(iii). 3x² - 27 = 0 ⇔ x² - 9 = 0 ⇒
= ± 3
If
= - 3 , then
= 54
If
= 3 , then
= - 54
Points are ( - 3 , 54 ) and ( 3 , - 54 )
(iv). ( - ∞ , - 3 ) ∪ ( - 3 , 3 ) ∪ ( 3 , ∞ )
increasing ----> decreasing -----> increasing
(v). x = - 3 is the maxima, the local maximum value is 54, f(-3) = 54
x = 3 is the minima, the local minimum value is ( - 54 ), f(3) = - 54
(vi). Concave up if f''(x) > 0 ; The interval is ( - ∞ , 0 )
Concave down if f''(x) < 0 ; The interval is ( 0 , ∞ )
(vii). Point of inflection is ( 0 , 0 )
f''(x) = 0
6x = 0
x = 0