Answer:
Explanation:
The correct answer is: The median of 14 is the most accurate to use, since the data is skewed.
Explanation: Since the data is skewed to the right, meaning there are some larger donations that pull the mean up, the median is a more accurate measure of center. It represents the middle value of the data when it is ordered from smallest to largest, and is not affected by extreme values.
The correct answer is: The IQR is the best measure of variability, and it equals 3.
Explanation: The IQR (interquartile range) is the best measure of variability for this data because it shows the range of the middle 50% of the data. The range, which is the difference between the minimum and maximum values, is affected by outliers and extreme values. In this case, the IQR is equal to 20-17=3.
The correct answer is: There is an outlier at 22.
Explanation: To determine if there are outliers in the data, we can use the rule: an outlier is any value more than 1.5 times the IQR below the first quartile or above the third quartile. The first quartile is 9.5 and the third quartile is 18, so the IQR is 18-9.5=8.5. Therefore, any value less than 9.5-1.5(8.5)= -4.25 or greater than 18+1.5(8.5)=30.25 would be considered an outlier. The value of 22 is greater than 30.25, so it is an outlier.
The correct answer is: The IQR is the best measure of variability, and it equals 18.5.
Explanation: The IQR (interquartile range) is the best measure of variability for this data because it shows the range of the middle 50% of the data. The range, which is the difference between the minimum and maximum values, is affected by outliers and extreme values. In this case, the IQR is equal to the difference between the third quartile (25) and the first quartile (6.5), which is 18.5.
The correct answer is: Player A is the most consistent, with an IQR of 1.5.
Explanation: The IQR (interquartile range) is the best measure of variability for this data because it shows the range of the middle 50% of the data. To find the IQR, we first need to find the first and third quartiles. For Player A, the first quartile is 2 and the third quartile is 3, so the IQR is 3-2=1. For Player B, the first quartile is 2 and the third quartile is 5, so the IQR is 5-2=3.
The correct answer is: The median is the best measure of center, and it equals 7.3.
Explanation: Since the data is not strongly skewed, either the mean or the median could be used as a measure of center. However, the median is often preferred because it is less affected by extreme values. The median for this data is the value that is in the middle when the data is ordered from smallest to largest. In this case, we have 10 data points, so the median is the average of the 5th and 6th values, which are both equal to 7. Therefore, the median is 7, and not 7.3. The mean is also 7.3, but it is affected by the extreme values.